

# **Enertracks Online Training Energy Transformation Expert**



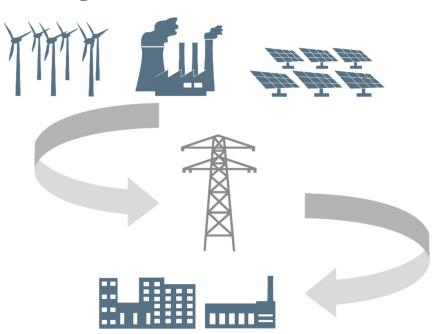
# **Enertracks online Training**



# Table of Content

| 1 | Wha | at is "EnerTracks Online Training"?                              | 3  |
|---|-----|------------------------------------------------------------------|----|
|   | 1.1 | Who should join the "EnerTracks Online Training"?                |    |
|   |     |                                                                  |    |
|   | 1.2 | Learning objectives                                              |    |
|   | 1.3 | Who will receive the certificate "Energy transformation expert"? | 4  |
| 2 | Wha | at are the dates for the four modules and exams?                 | 5  |
|   | 2.1 | Module 1: Introduction to power systems                          | 6  |
|   | 2.2 | Module 2: Policies supporting energy transformation              | 9  |
|   | 2.3 | Module 3: Technical aspects of energy transformation             | 13 |
|   | 2.4 | Module 4: Future trends in the power sector                      | 18 |
| 2 | DEN | AC Online                                                        | 22 |








# 1 What is "EnerTracks Online Training"?

This online training will prepare participants to manage the challenges connected to power system transformation and decarbonization better. The online training was developed within the wider scope of the EnerTracks project held in conjunction with our partners AGORA Energiewende.

The online training is part of the EnerTracks project and is supported by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety through the German International Climate Initiative (IKI).



# 1.1 Who should join the "EnerTracks Online Training"?

#### This training suits you if you:

- are a citizen of one the <u>eligible countries</u>
- are working in the energy sector and willing to work on decarbonisation and increased flexibility of power systems
- have a sincere interest in tackling climate change issues and the energy transformation in your home country
- were not able to complete all 4 modules in the previous EnerTracks Online Training (2019-2021) and would to take the modules you missed out on

# 1.2 Learning objectives

#### After the online training, participants will be able to:

- Explain technical, economic and organisational principles of power systems
- Analyse suitable policies and mechanisms for a low-carbon power system transformation
- Distinguish and compare different technical flexibility options suitable for power systems to compensate fluctuating power generation from renewable energy systems
- Evaluate the impact and suitability of current trends in the energy sector regarding power system transformation



# 1.3 Who will receive the certificate "Energy transformation expert"?

- Candidates who complete all four modules successfully will receive an additional certificate under the title
   "Energy transformation expert". This includes participants who completed the modules in the previous phase
   of the EnerTracks programme and are using this opportunity to catch up on modules missed.
- The content of the modules and examination duration may change at the discretion of RENAC compared to previous phases of the EnerTracks programme. Participants re-taking modules may find that the requirements for passing the final examination have been modified and must meet the latest requirements as stipulated in this handbook/ in future communications in order to be eligible for a final certificate.
- Each of the four modules will end with an exam. All participants who score above 70% in the final online exam will receive a RENAC certificate.
- Candidates who work through the online assignments in each module will receive a 5% bonus for the exam (capped at 100%).

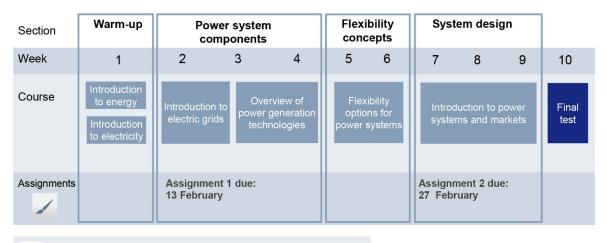






# 2 What are the dates for the four modules and exams?

The online training consists of four modules, each of which have final examinations. The schedule for these activities can be found below:


|          | Start          | End              | Final examination | Re-exam         |
|----------|----------------|------------------|-------------------|-----------------|
| Module 1 | 9 January 2023 | 24 March 2023    | 16 March 2023     | 23 March 2023   |
| Module 2 | 27 March 2023  | 9 June 2023      | 1 June 2023       | 8 June 2023     |
| Module 3 | 12 June 2023   | 25 August 2023   | 17 August 2023    | 24 August 2023  |
| Module 4 | 28 August 2023 | 10 November 2023 | 2 November 2023   | 9 November 2023 |



#### 3 Courses

The online training of the EnerTracks programme comprises four modules. These modules can be taken as a consecutive programme, but also individually as each module stands for itself. Module 1 offers a general introduction to power system transformation while Module 2 explores on the economic and political frameworks surrounding energy transitions. Module 3 delves into more technical aspects such as grid integration of renewable energy systems and flexibility options. Finally, module 4 will bring the online training segment to a close with a look at new trends and their potential to shape future power systems.

# 2.1 Module 1: Introduction to transformation of energy systems





Final test: 16 March 2023

Retest: 23 March 2023

Course: Introduction to electric grids

#### Learning objectives:

Upon completion of this course, participants will be able to

- explain the basic technological terms and principles governing the operation of electrical power
- svstems.
- explain the importance of frequency and voltage stability for electric grid operation,
- describe the parameters that affect frequency and voltage stability in electric power grids and
- distinguish impacts that conventional power plants and RE power plants have on the operation of a power grid.

- Structure of electricity grids
  - o Elements, voltage, AC vs. DC, conventional power plants, new paradigm
- Secure operation of electricity grids
  - Quality and security of supply, operating states, frequency and voltage stability



# Course: Overview of power generation technologies

#### Learning objectives:

Upon completion of this course, participants should be able to:

- describe how different thermal power and renewable energy generation technologies work in principle
- compare power generation technologies based on different cost aspects
- explain global trends of power generation technologies in terms of investments

- Conventional power generation technology
  - o Nuclear power plants, coal power plants, open cycle gas turbines and combined cycle gas turbines
- Renewable electricity generation technologies
  - Hydropower and pumped storage, wind energy, photovoltaic (PV), concentrated solar power (CSP), biomass (solid biomass and biogas) and geothermal power
- Cost comparison of power generation technologies
  - o Metrics for cost comparison, LCOE, marginal cost, external cost and grid parity



# Course: Flexibility options for power systems

## Learning objectives:

Upon completion of this course, you should be able to

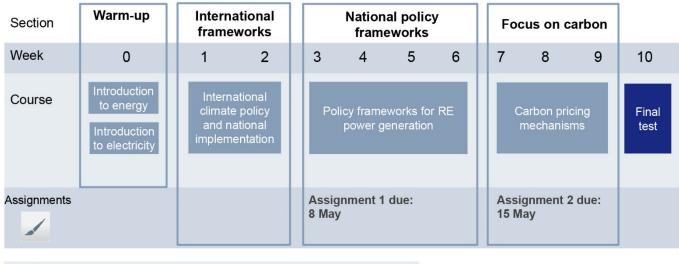
- explain the key role of flexibility in successful power system transformation
- describe different flexibility options and name important measures
- formulate the framework for a cost-effective power system transformation

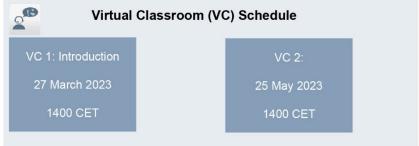
#### Content:

- Power system transformation
  - Impact of variable renewable energy (vRE), value of flexibility and optimised management of vRE development
- Flexibility options
  - Grid infrastructure and management, storage, demand-side integration, dispatchable generation and flexible thermal power plants
- Cost of flexibility
  - Levelised cost of flexibility, transmission grids, distribution grids, storage, small-scale DSI, large-scale
     DSI, dispatchable generation and flexibility investment plan
- Market frameworks
  - o Role of short-term markets

#### Course: Introduction to power systems and markets

#### Learning objectives:


Upon completion of this course, you should be able to


- describe the elements of a power system
- distinguish and characterise the five models of power system design
- explain what role competition plays in each of the five models
- identify principles of power market design, architecture and respective rules

- Key elements of electricity system
  - o Planning, dispatch, system operation and pricing
- Current structures of the power sector models
  - Characteristics of vertically integrated market model, single-buyer model, partially unbundled (unbundling) model, whole sale market model and retail competition model
  - o Further characteristics: reliability standards and options, energy only market and capacity market



# 2.2 Module 2: Energy policies for a successful energy transition





Final test: 01 June 2022 Retest: 08 June 2022

# Course: International climate policy and national implementation

#### Learning objectives:

Upon completion of the course, you should be able to:

- understand the basics of climate science behind the Paris Agreement
- know important milestones in the history of the road to the Paris Agreement
- know the basic elements and architecture of the Paris Agreement (goals, nationally determined contributions (NDCs), transparency framework and global stocktake)
- understand how international agreements like the Paris Agreement with its core elements, the NDCs and sustainable development goals (SDGs), promote RE development
- understand the linkages between SDGs and NDCs
- understand the implications of a country's NDC
- understand how international climate policy can help to integrate and mainstream national climate policy options to support renewable energy deployment
- relate the periodic elements of the Paris Agreement to national policy processes with respect to key components such as national implementation, procedure of monitoring, reporting and verification (MRV) and revision/update of subsequent NDCs
- reflect about the role of Co-Benefits in the Paris Agreement and the SDGs

# **Enertracks online Training**



- IPCC reports (climate impact scenarios and pathways to 1.5°C /2°C)
- UNFCC, UN sustainable development agenda
- Paris Agreement (goals, NDCs, transparency framework and global stocktake)
- NDCs means of implementation (finance, technology, capacity building)
- Key actors, participatory processes
- Measuring progress
- Understand national enabling political environments and policies



## Course: Policy frameworks for renewable energy power generation

## Learning objectives:

Upon completion of the course, you should be able to:

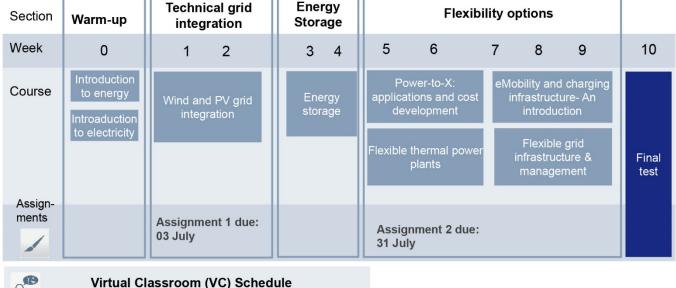
- analyse the most widely used support mechanisms for renewable energy (feed-in tariff, net-metering, auction, etc.)
- analyse and design the most widely used support mechanisms for renewable energy (feed-in tariff, netmetering, auctions and other schemes)
- determine conditions to design successful support mechanisms or regulatory policies
- discuss suitability of policy regulations for different phases of the energy transition

- Introduction to renewable energy policy and target setting
  - Objectives of renewable energy policies, renewable energy target setting, categorisation of support mechanisms
- Net-metering for distributed generation
  - Cost development, grid parity, net metering and risks of self-consumption policies
- Feed-in tariffs for distributed generation and large-scale projects
  - o Feed-in tariff (FiT) design, tariff calculation, tariff degression, capacity caps and feed-in premiums
- Competitive procurement/auctions for large-scale projects
  - Auction results, auction design, procurement schedule, price-finding mechanism, penalties for noncompliance, pre-qualification and selection criteria
- Additional incentives
  - Tax incentives, tax credits, accelerated depreciation, low-interest loans, quota-based mechanisms, corporate power purchase agreements (PPAs) and general framework conditions
- Policies for smooth technical and market integration of renewable energy
  - Location-specific FiTs and auctions, renewable energy curtailment and system integration and priority dispatch of renewable energy



Course: Carbon pricing mechanisms

#### Learning objectives:


Upon completion of the course, you should be able to:


- comprehend the rationale for economic instruments in the context of climate change (carbon pricing mechanisms)
- explain major historical developments in carbon pricing and illustrate the global landscape of carbon pricing mechanisms
- understand and explain the different basic design features and principles of carbon pricing mechanisms (i.e. carbon tax and emission trading schemes and offsetting mechanisms)
- discuss major barriers to, key success factors of, and prospects for carbon pricing mechanisms in the economy and energy projects
- know how to get started with carbon pricing (i.e. identify and select respective instruments and partners)

- Introduction to carbon pricing mechanisms
  - Global landscape of GHG emissions, comparing GHG emission reductions, rationale for putting a price on carbon, carbon pricing mechanisms and their basic principles, relevance for national energy transition and emission performance standards
- Evolution of carbon pricing mechanisms
  - Emissions trading: the EU emissions trading scheme, other emissions trading schemes, carbon taxes in the OECD countries and emerging markets, clean development mechanism (CDM) and joint implementation (JI), corporate carbon pricing, global landscape, trends and outlook of carbon pricing
- Principles of emissions trading schemes
  - Anticipated effects of an emissions trading scheme, design features of an emissions trading scheme, allocation methods in emissions trading, trading of emissions under an emission trading system (ETS), deriving a carbon price for emissions trading, challenges of the EU-ETS, cases in which an emissions trading is useful
- Principles of carbon taxes
  - Anticipated effects of a carbon tax, design features of a carbon tax, defining the coverage of a carbon tax, deriving a carbon price for the tax, use of tax revenues, implementing a carbon tax, cases in which a carbon tax is useful
- Principles of offsetting mechanisms
  - Anticipated effects of offsetting mechanisms, calculating emission reductions, transparency and accounting for GHG emissions, deriving a carbon price for offsetting, trading carbon credits, the offsetting project cycle and cases in which offsetting is useful
- Analysing the effectiveness of carbon pricing mechanisms
  - Emissions trading, carbon tax and offsetting (key lessons learned, barriers and success factors, impact on energy projects)
- Further orientation on carbon pricing
  - Understanding the role of carbon pricing mechanisms in your country, further reading on emissions trading and carbon taxation, getting started with offsetting opportunities and best practice example for RE/EE projects



# 2.3 Module 3: Technical requirements for the energy transition





Final test: 17 Aug 2023 Retest: 24 Aug 2023

Course: Wind and PV grid integration

## Learning objectives:

Upon completion of the course, you should be able to:

- explain the use and development of time series for variable renewable energy
- present the basics about power system operation, scheduling and forecasting
- describe the purpose and types of balancing power and management of grid congestion
- discuss capacity planning methodologies, grid codes and the development of grid studies

#### Content:

- planning methods regarding fluctuating renewable energies
- time series for fluctuating renewable energies which are required for planning of the power systems or investment decisions
- principles on scheduling, forecasting and forecasting errors
- balancing power systems required for secure grid operation in relation to minimum capacity requirements and grid congestion management
- capacity planning methods and evaluation indicators for generation adequacy and capacity credit for variable generators;
- grid code
- grid impact and system integration studies

Course: Energy storage as a flexibility option



#### Learning objectives:

Upon completion of the course, you should be able to:

- describe the purpose and future role of energy storage systems (ESS)
- classify storage technologies
- calculate specific costs and compare different economic aspects of ESS
- explain how different energy storage technologies complement each other

- progress and challenges of energy storage systems
- advantages and disadvantages of principal contemporary ESS options
- the following ESS will be described in detail:
  - o mechanical storage (e.g. compressed air energy storage (CAES) or pumped hydro plants)
  - o electrical storage (e.g. superconductive magnetic energy storage (SMES))
  - thermal storage (TES)
  - electro-chemical storage (batteries)
  - o chemical storage (e.g. hydrogen)







Course: Coupling of power sector with mobility, building and power-to-X

#### Learning objectives:

Upon completion of the course, you should be able to:

- explain how the electricity-, transport- and building sector can be coupled
- compare status of available technologies for power sector coupling

#### Content:

- Introduction, why sector coupling?
- power to X, mobility sector, heating / cooling in residential sector and heating / cooling in industrial / commercial sector
  - o characteristics
  - technology
  - o applications
  - cost development

# Course: Flexible thermal power plants

#### Learning objectives:

Upon completion of the course, you should be able to:

- explain what flexible operation of thermal power plants means
- describe important technical measures facilitating this mode of operation
- determine key success factors for operating flexible thermal power plants in an economically viable way

- transition from baseload to flexible operation regime that is characterised by cycling operation, steep ramps and low minimum loads
- market and framework conditions that support the flexible operation of thermal power plants







Course: Flexible grid infrastructure and management

#### Learning objectives:

Upon completion of the course, you should be able to:

- explain which grid infrastructure components allow to transmit and distribute high shares of vRE generation across the power system
- analyse congestion management procedures in the context of decarbonisation efforts

#### Content:

- Grid operation: purpose and definitions, thermal limits of grids, stability limits of grids, what happens in case of errors
- Infrastructure improvements to enable high vRE shares (e.g. high-temperature wires, monitoring of transmission wires and substations with phase shifters)
- Congestion management, online services and data management for the grid control centre, dispatch hierarchy, re-dispatch mechanism and load flow management

Course: E-mobility for private transport and charging infrastructure - an introduction

#### Learning objectives:

Upon completion of the course, you should be able to:

- determine different applications of digitalisation in the power sector
- analyse benefits of increasing digitalisation across the power sector
- discuss new trends which are built upon digitalisation of the power sector

- Transport and sustainability
- Electric vehicles for private transport
- Private EV charging infrastructure





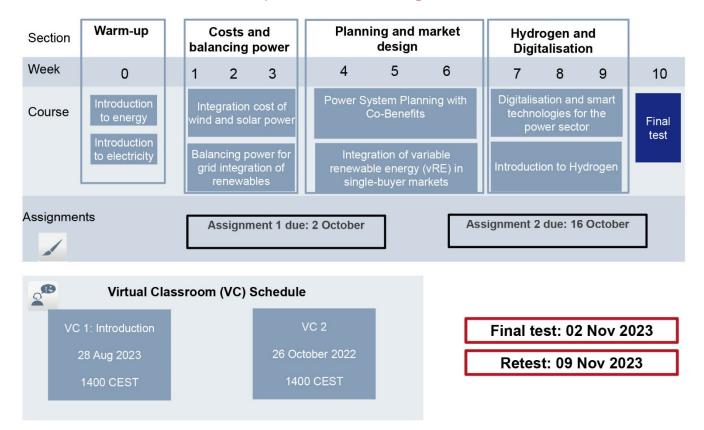


# Course: E-Mobility: Implications for the distribution grid

#### Learning objectives:

Upon completion of the course, you should be able to:

- **Describe** how an electric drive train works and what kind of charging infrastructure is necessary for different applications.
- Be aware of the challenges and opportunities associated with the integration of electric vehicles into the grid.
- Differentiate between rural and urban mobility in terms of their implications on the grid.
- Take action on integrating electric vehicles into the grid.


- Introduction to e-mobility and changing infrastructure
- Challenges and opportunities in grid integration of e-mobility
- Charging strategies
- Differences between urban and rural areas
- Recommended course of action for system operators







# 2.4 Module 4: Power sector analysis and market design



#### Course: The integration costs of wind and solar power

#### Learning objectives:

Upon completion of the course, you should be able to:

- explain what aspects are covered by the term integration costs
- introduce how to quantify grid costs
- explain how to calculate balancing costs
- distinguish economic effects on existing conventional power plant utilisation
- describe the total system cost approach

- definition of integration costs
- grid costs and balancing power costs
- effects on existing power plant utilisation: residual load duration curves, residual load analysis with modelling tool, cost of reduced power plant utilisation, shift from base load to mid-merit and peak load power stations, capacity requirement for dispatchable thermal power plants
- total system cost (approaches, questions, limitations and lessons learned from case studies)



## Course: Balancing power system design for low carbon power systems

#### Learning objectives:

Upon completion of the course, you should be able to:

- explain the necessity and purpose of balancing power mechanisms
- distinguish different concepts of balancing power as well as types of reserves
- describe different financial and physical relationships involved in balancing power systems
- apply concepts for dynamic balancing power dimensioning
- develop concepts how balancing power systems should be designed to be compatible with increasing shares of variable renewable energy

#### Content:

- balancing power (purpose, types and definitions)
- supply of balancing power
- probabilistic approach

## Course: Power system planning with Co-Benefits

#### Learning objectives:

- Upon completion of the course, you should be able to:
- distinguish between traditional and advanced power system planning (PSP) approaches
- compare tools used for power system planning and how co-benefits can be used during the planning process
- explain how selected co-benefits of renewable energy, e.g. tackling climate change and the human health effects of ambient air quality and affect the outcome of power system planning

- integrated power system
- power System Planning (PSP) the time horizon perspective
- indicators and co-benefits in power system planning (PSP)
- traditional integrated power system planning methodology (TIPSP)
- advanced power system planning methodology
- advanced integrated power system planning methodology (AIPSP)
- comparison of planning tools
- power system planning case studies with and without co benefits



# Course: Integration of variable renewable energy (vRE) in single-buyer markets

#### Learning objectives:

Upon completion of the course, you should be able to:

 Understand and discuss major differences how flexibility measures and ancillary services measures that were developed for competitive markets could be introduced in single-buyer markets

- Flexibility measures
  - o central power plant dispatch versus day-ahead and real-time/ intraday markets,
  - o long-term PPAs versus flexible PPAs
  - o reserve margin versus balancing circles / balancing power markets
  - o central congestion management versus flexibility markets (flexibility potential on TSO and DSO-level)
- Ancillary services
  - o spinning reserve for frequency control centrally provided by grid operator and by balancing power markets
  - o reactive power for voltage control centrally provided by grid operator / large power and distributed generation







## Course: Digitalisation and smart technologies for the power sector

#### Learning objectives:

Upon completion of the course, you should be able to:

- identify the areas of the power sector which are most affected by digitalisation
- assess advantages for society, the economy, and market participants from the digitalising the power sector
- identify and explain the most important technologies for the current digitalisation of the power sector
- explain how these technologies can be applied in order to optimise generation, transmission, storage and consumption of electrical power
- understand which aspects of digitalisation support decarbonisation and energy efficiency, and which can put these objectives at risk
- demonstrate how digital technologies shape existing markets and processes, and how they may create new ones
- describe the risks arising from increasing digitalisation of the power sector and create counter measures against potential attacks

#### Content:

- energy economics background of digitalisation of the power sector
- opportunities and risks of digitalisation for sustainability and decarbonisation
- key technologies
- market generation, transmission and consumption
- smart markets and processes
- risks and cyber security

#### Course: Introduction to Hydrogen

# Learning objectives:

Upon completion of the course, you should be able to:

- Explain the basic components of a hydrogen-based energy system and infrastructure
- Describe the current uses of hydrogen, its production methods and value chains
- Describe the opportunities and limitations of hydrogen as future energy carrier and in developing a sustainable energy future
- Understand the current status of hydrogen policies in the international arena

- The element hydrogen
- Types of hydrogen application
- Hydrogen generation and fuel cells
- Hydrogen infrastructure
- System integration
- The cost of hydrogen
- Hydrogen strategies and roadmaps



# 3 RENAC Online





- Boost your professional career
- Study with flexibility following your own schedule
- Learn at any time and from any location



RENAC Online offers extensive support & interactive learning:

- Videos
- Graphics
- Exercises for self-evaluation
- Discussion forum
- Virtual classrooms



**RENAC Online staff are:** 

- Certified e-learning trainers
- Experienced professionals
- In direct contact with the industry







CERTIFIED EUROPEAN E-LEARNING MANAGER



# **Extensive support**

#### 1 Forum

Support and communication take place in a discussion forum. RENAC monitors the forum constantly. RENAC experts are ready to give assistance and discuss the course topics.



#### 2 Assignment

After studying each course, participants are asked to answer an assignment question. RENAC gives individual feedback for these assignments.

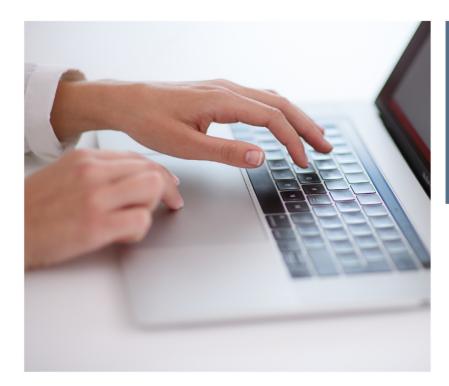


#### 3 Virtual classroom

Participants should attend the live virtual classroom sessions (webinars). These are conducted by renewable energy experts. During and after the presentation participants are invited to discuss in the live chat.



#### Certificate


All participants who score above 70% in the final online exam will receive a printed RENAC certificate. All others will receive a certificate of attendance per e-mail.











#### TECHNICAL INFORMATION

You need to provide an e-mail address, which you check regularly.
Furthermore you need a computer with a stable internet connection (at least 2 Mbit/s). For webinars, the AdobeConnect add-in or app should be installed, and a headset or speakers are required to listen to the presentation.





#### REGISTRATION:

You can register for the EnerTracks online training via the registration form at: <a href="https://www.renac.de/projects/current-projects/enertracks/online-training">www.renac.de/projects/current-projects/enertracks/online-training</a>

#### **DEADLINES:**

The registration deadline is over.

Participants who are not able to finish the online training in one semester can book an extension of 6 months (following semester) at a 80% reduced course fee.

#### DISCOUNT

Early bird 10%; group (2 or more) 5%; combination of both 15%.

#### **Demo course**

For a first impression of our online platform, have a look at: http://renewables-online.de/blocks/demologin/logindemo.php?course=Demo





# **Impressum**

Content and Layout:

Renewables Academy (RENAC)

Pictures:

RENAC, pixabay (cover)





# **EnerTracks Online Training**

https://www.renac.de/projects/current-projects/enertracks/online-training/

#### Contact:

Albrecht Tiedemann Head of division Climate & Energy Policy, Grid Integration of Renewable Energy Renewables Academy (RENAC) AG Schönhauser Allee 10-11