

Market & Flexibility

An Electricity Market for Germany's Energy Transition

October 2014

Broad discussion process with German and European stakeholders (Green Paper)

Key question: How to help electricity market fullfil its *two* roles:

July 2015

Decision for an energy-only market 2.0 (White Paper)

Further consultations in the context of the Electricity Market Platform

Autumn 2015 -Spring 2016

Enactment of legislation

Share of variable renewables in produced electricity 2014

German electricity system volatility today

The contribution of renewables to the electricity system varies widely depending on the season.

Future: German electricity system volatility in 2022

By 2022 renewables can cover the total demand for certain hours e.g. over midday, but for the calm winter days conventional back-up capacity will still be needed.

Source: Agora Energiewende 2015

Four areas to increase flexibility

Technology neutral policies foster innovation: Different flexibility measures are suitable for different challenges to the grid.

Discussion

Key elements of the electricity market act 2016

More flexibility		Strengthened market mechanisms	 Free price formation Strengthen incentives to uphold balancing group commitments
		Fair competition between flexibility options	Wider access to balancing capacity markets: more competition between power stations, consumers and storage facilities
Ensure system security		Capacity reserve	 Power stations of approx. 4 GW ready to step in exceptional situations where demand cannot be met in any other way
		Grid reserve	 Prolonged beyond 2017 to guarantee secure grid operation and relieve congestion Winter grid reserve
Lower carbon emissions		Security stand-by	 Old lignite-fired power stations will be placed on "security stand-by" and decommissioned after four years
		Monitoring of security of suppy	 Monitoring of security of supply will no longer focus solely on national output, but also on European internal electricity market

Change of requirements for power plants

Due to the energy transition Germany will need less base-load and more intermediate-load in the future.

Flexibility of the German power plant fleet

Technical characteristics of conventional power plants									
power plants	cost / installed capacity	efficiency	CO ₂ emissions	load change rate	minimum load	warm start up	cold start up		
	€/kW	%	kg/MWh _{el}	% P _N /min	%/P _N	h	h		
Hard coal	1.300	36 - 46 (50)	939 - 735 (676)	1,5 - 4 (6)	40 - 25 (20)	3 - 2,5 (2)	10 - 5 (4)		
Lignite	1.400	32 - 43 (44)	1.263 - 940 (804)	1 - 2,5 (4)	60 - 50 (40)	6 - 4 (2)	10 - 8 (6)		
CCGT	700	40 - 62	503 - 347	2 - 4 (8)	50 - 40 (30)	1,5 - 1 (0,5)	4 - 3 (2)		
GT	400	37,5	640	8 - 12 (15)	50 - 40 (20)	< 0,1	< 0,1		

Increasing flexibility of conventional power plants allows balancing volatile renewables.

Source: dena 2014

Energy security: duration of supply failures in Europe 2014

Germany maintains top energy security levels during the energy transition.

EU energy market design – requirements and solutions

EU countries currently debate different market designs to secure future electricity supply:

- Energy-only markets
- Additional capacity markets
- Other means, e.g. capacity payments

The future energy market needs to:

- be suitable for an inter-connected EU-wide electricity market
- give clear price signals for new investment
- promote regional cooperation, including on support schemes

Gross power generation capacities in Germany

Renewable expansion has led to a growth in total capacity.

Development of electricity generation from renewable energy sources in Germany

While in the 1990s hydro was the only renewable energy source, wind onshore, biomass and solar contribute all to the generation of electricity.

Electricity import and export balance (load flow)

Germany is a net exporter, the Netherlands imports the most electricity from Germany.

Transmission system operators in Germany and share of fluctuating renewables

• 11,000 km

24.7% volatile peak capacity

TransnetBW

- 3,420 km
- 31.6% volatile peak capacity

Germany

- Highest volatile capacity: 42 GW at 60 GW load
- Hourly shares over 65%

50Hertz

- 9,995 km
- 48% volatile peak capacity

TenneT

- 10,800 km
- 49.5% volatile peak capacity

German TSOs have already handled over 75% of the power in the grid coming from renewables.