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 Europe‘s largest applied research organisation

 Undertakes research for direct use 
by private and public enterprises, 
providing a wide range of 
benefits to society

 80 research units, including 66 Fraunhofer Institutes

 Staff of around 24,500

 Annual research budget of around 2.1 bnEUR

Fraunhofer-Gesellschaft conducts applied research and comprises 66 institutes across Germany
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Fraunhofer has several locations and contact possibilities worldwide
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The Energy System Technology branch of Fraunhofer IWES is located in Kassel

Our service portfolio deals with current and future challenges faced by the 
energy industry and energy system technology issues.

We explore and develop solutions for sustainably transforming 
renewable based energy systems.

 Personal: approx. 310

 Annual budget: approx. 22 Mio EUR

 Director: Prof. Dr. Clemens Hoffmann

www.energiesystemtechnik.iwes.fraunhofer.de
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We research and develop solutions in different fields of expertise

Device and System Technology

Electrical Grids

Energy Process Engineering

Energy Economics and System Design

Energy Meteorology and Renewable Resources

Energy
Informatics
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Energy System Technology

 Power electronics and devices

 Grid planning and operation

 Measurement and test services

 Decentralised energy management

 Hardware-in-the-loop systems

 Systems engineering

Energy Economics

 Energy meteorological information systems

 Consulting and analyses in energy economics

 Virtual power plants

 LiDAR Wind measurements

 Training and knowledge transfer

Energy Economics and Energy System Technology are our two business areas
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Energy Economy and System Analysis Group at Fraunhofer IWES mainly answers its research questions 
with the SCOPE model family

 Dynamic simulation of power markets in Germany and Europe

 Scenario development for energy system transformation towards 
decarbonisation

 Technology evaluations in future energy markets (particularly. at sector 
coupling interfaces power – heat und power - mobility)

 Grid and storage expansion analyses

Research focus

Current projects

 North Seas Offshore Network (NSON-DE), BMWi, 2014 – 2017

 Treibhausgasneutrales Deutschland, UBA, 2016 – 2018

 Klimawirksamkeit Elektromobilität, BMUB, 2016 – 2018
http://publica.fraunhofer.de/documents/N-439079.html

 Wärmewende 2030, AGORA, 2016
http://bit.ly/2kDMHst

 Interaktion EE-Strom-Wärme-Verkehr, BMWi, 2012-2015
http://publica.fraunhofer.de/documents/N-356297.html

SCOPE model family

 Sector-wide dispatch and expansion planning model for analyses of future 
energy supply systems

 Modular and customisable techno-economic fundamental market model 
with various configurations
e.g. block-specific  unit commitment (day-ahead, balancing reserve),
Expansion planning of grids and units (TEP/ GEP)

 Implemented in MATLAB, solved by IBM ILOG CPLEX on IWES-owned 
High-Performance Computing Cluster
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Long-term climate targets are very ambitious and decarbonisation challenges the energy sectors –
promising solution via sector coupling technologies based on wind and solar power

1) Land use, land-use change and forestry (LULUCF) 
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Complying with COP21 Paris agreement requires emission
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implying consequences for the energy sector:

Power Heat Transport
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Heat pumps and electric vehicles are key technologies for coupling of energy sectors – they increase 
the energy efficiency and substitute fossil fuels

Power Heat Transport
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One SCOPE configuration serves the development of cost-optimised target scenarios of future energy 
systems with energy and emission targets

1) Static and deterministic Generation Expansion Planning (GEP) model.

Europe and/ or Germany

Objective is to
minimise investment and 

system operation cost

subject to compliance with
climate protection targets

full consecutive year, 
hourly resolution (8760h)

historical climate reference years

Linear Optimization Model (LP)1)

 Optimised power generation mix

 Optimised heat generation mix

 Optimised transport mix

 Energy framework and installed capacities

 CO2 emission price(s)

 …

Output data

 Fuel cost

 Technology cost

 Potentials and restrictions

 Energy demand time series (power, heat, industry, 
transport)

 Technology-specific time series (wind, solar, natural 
inflow, COP, solar thermal, …)

Input data

Markets

Power market
Heat markets

(various building types and 
temperatures)

Gas markets
(national/ international)

Mobility demand
CO2 markets

(national/ international, 
sector-specific)

Technology options

Wind, Solar Energy storage Power-to-Gas BEV PHEV/ REEV

Hydro power Cogeneration Cooling process Boiler Electric truck (OHL)

Condensing Plant Power-to-Heat Heat pump Solar thermal Geothermal
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Exemplary week shows integration of renewable energy production through sector coupling –
heat and transport sector introduce flexibility and directly use electricity

EXEMPLARY
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A similar pattern becomes visible for the other market areas in Europe – conventional generation is 
reduced to natural gas (mainly CHP) and existing nuclear plants by 2050
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Long-term scenarios with high levels of decarbonisation bring along challenges for planning tools 
which are designed to investigate more specific subjects

Multi Market Area Dispatch and Offshore Grid Expansion Model

Onshore market area

 Load coverage of residual load

 Technical restrictions of the hydro-thermal plants

 Technical restrictions of other flexibility options (e.g. as battery storage, 
flexible CHP, electric mobility)

Offshore grid region (area)

 Load coverage/ node balance of offshore hubs with wind generation/ 
curtailment/ storage

 Investment decision variables in offshore grid infrastructure

Power exchange between areas

 Im-/ export between onshore market areas

 Im-/ export between onshore market areas and offshore grid region

Omitting sector coupling and its interaction in planning tools 
focussing on e.g. offshore grid investments is not an option

Modelling (and solution) challenges are amplified even more
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Key messages regarding long-term energy scenario development in Germany and Europe

Focus used to be on reaching renewable shares in the traditional power sector 
and making use of surplus energy

Coupling the traditional power sector with heat / industry / transport sectors 
is crucial to decarbonise the energy supply system and 

comply with climate targets

Generation from wind and solar will be the main source of energy 
as simulations show its feasibility and LCOE are continuing to go down

Current alternatives expected to play a complementary role
Biomass, solar thermal, geothermal

Challenges for power system planning and operation models 
to adequately address future system flexibility

from a methodological perspective 

Technology efficiency is still an important issue
although there are good wind and solar potentials across Europe,

but social acceptance imposes limits

High efficiency sector coupling technologies already relevant today
such as heat pumps & electric vehicles

Low efficiency sector coupling technologies become relevant in the long-term
such as Power-to-Heat & Power-to-Gas

Flexibility of the new consumers is assumed as a given
implying that they see some kind of flexibility signal

European balancing via the electricity market is a vital assumption
as it facilitates significant balancing between regions

Installed capacities are optimised to the absolute minimum
by the deterministic generation expansion planning model

(particularly conventional generation capacities)

Presented scenario is to be seen as a lower bound
since e.g. balancing reserve markets are not included

Limitations and assumptions:
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CURRENT CHALLENGES OF THE INTEGRATION OF LARGE 
AMOUNTS OF WIND AND SOLAR POWER

Malte Siefert

Virtual Power Plant RES Forecast
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Introduction - German power system 

2025
~40%

2035
~55%

2050
>80%

Top-down Optimization Bottom-up
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Renewables replaces conventional power production

Intermittent character of wind and PV
 Grid operation more sophisticated
 Resource planning more sophisticated

Security of supply
 Balancing of supply and demand
 Grid security

Ancillary services from RES
 reactive power (voltage stability)
 control reserve (frequency stabilization)

Holistic view on energy system 
 Activation of flexibility
 sector coupling

Introduction - The Challenges
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VIRTUAL POWER PLANT– RENEWABLE ENERGY PRODUCTION 
OF THE FUTURE
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Introduction – New role portfolio manager (Energy trade)

TSO

DSO A

DSO B

Feed‐in tariff

380/220 kV

110 kV

110 kV

Feed‐in tariff

Portfolio

Roles: TSO, DSO, customer, plant operator, RE plant operator, energy trader

VPP operator 

 manages portfolio

 Use cases

 energy trading (CVPP)

 grid support (TVPP)

Benefits

 Data ownership

 Portfolio optimization
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Virtual Power Plant (VPP) - Definition

“A virtual  power  plant  is  a  cluster  of  dispersed  generator units,  
controllable  loads  and  storages  systems,  aggregated in order to operate 
as a unique power plant. The generators can use  both  fossil  and  
renewable  energy  source.  The  heart  of  a VPP  is  an  energy  
management  system  (EMS) which coordinates the  power  flows  coming  
from  the  generators,   controllable  loads  and  storages.  The  
communication is bidirectional, so that the VPP can not only receive 
information about the current status of each unit, but it can also send the 
signals to control the objects.”

Source: Virtual Power Plant (VPP), Definition, Concept, Components and Types, Saboori, 2011, IEEE
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Virtual Power Plant (VPP) - Architecture
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Virtual Power Plant (VPP) – Aggregation level

Communication interface
 Standardization useful and needed

Communication protocols 
 TCP/IP based

Communication technologies 
 DSL, LTE, GSM, satellite  communication

Communication security 
 VPN
 Web security
 closed user groups
 point to point connections

Typical requested data

 P, Q, storage, weather information, 
possible power feed-in

Bidirectional connection, push/pull

photovoltaic plants
OPC DA Server

CHP
VHP Ready

Biogas plants
IEC 60870-5-104

wind farms 
OPC DA Server
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Virtual Power Plant (VPP) – Business logic level

Metering interface to portfolio

Database

Business logic-kernel 
 Optimization of business cases

Unit commitment 
 Calculation of schedules 
 Calculating of operating points

Interfaces to external IT-infrastructure, 
Interface to portfolio

Database
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Virtual Power Plant (VPP) – Integration level

Graphical user interfaces

Monitoring systems

External IT systems
 Customer dependent (In case of utility SAP for 

accounting, etc.)

Forecast systems
 Power feed-in from fluctuating sources, 
 load forecasts
 price forecasts for different markets
 External trading systems

Grid operation
 State information
 requests for control reserve power 

Graphical user interface

Redundant 

vpp

G
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External IT

Forecast systems
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Virtual Power Plant (VPP) – Relevant research and cooperation projects (examples)

VPP as a substitution of 
conventional power plants

(European research – FENIX,)

Control reserve power with wind and PV,

Optimization of revenues

(National funded research – ReWP)

Aggregation of 700 MW renewable energies

Portfolio in Germany

(Cooperation – ARGE-Netz GmbH)

Conceptualization of a Virtual Power Plant 
(VPP) in India

(International research/cooperation with ICF)
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FORECAST SYSTEMS FOR THE INTEGRATION OF LARGE 
AMOUNTS OF WIND AND SOLAR POWER 

Projects:

EWeLiNE (2013-2017)

Gridcast  (2017-2021)
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Cooperation between weather service and network operators

Seite 32

weather forecast power forecast application of 
power forecast 

Francis McLloyd
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Improvements along the whole forecast chain

assimilation Weather
forecast

Post 
processing

Power
forecast

Post
processing application

Seite 33

DWD DWD Francis McLloyd
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Problem description

 RES forecast for congestion forecast becomes one of the 
most important forecast for TSO in Germany

 Operational planning: forecasting the future system 
state + actions

 System state parameters: node voltage and branch 
current

 Risks can be captured with uncertainty information (risk 
for (n-1)-violation)

 Further Need: operational planning process which is 
capable of integrating uncertainties
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Most of the RES plants are connected to DSO-level

DSO DSO

~

TSO TSO

PV PV

~ ~



Härtel, P., Siefert, M., Mende, D., Berlin, September 28, 2017
© Fraunhofer IWES

36

The challenge

1. Estimating the actual RES feed-in 
into transformer stations

2. Forecasting the RES feed-in 
into transformer stations

3. Estimating the reduced production of RES plants

4. Improved allocation of RES plants to transformer stations 
and integration of the grid sate

5. Quantification of the forecast uncertainties

6. Testing the results by functional models
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Uncertainty Forecast for Congestion Management
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 Our research results are proven in practice

Forecast Systems

Fraunhofer is Europe’s largest application-oriented research organization.

Virtual Power Plant
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Installed capacity Power supply (August 2017)

 Installed capacity of renewables sharply increased in recent years

 Installed capacity constant respectively slightly decreasing (changing to cold reserve)

 Varying share of renewables in power supply due to intermittend primary resources

Renewables in the German power system

Source: https://www.energy-charts.de. Accessed September 25, 2017.
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 System services classically provided by conventional power plants, but oftentimes not yet required by RES

 RES need to participate in system services to keep system qualities up

System ancillary services – classical provision and new challenges

Source: dena Ancillary Services Study 2030. https://www.dena.de/en/topics-projects/projects/energy-systems/dena-ancillary-services-study-2030. Accessed September 25, 2017. 
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Frequency control in power systems with high penetration of renewables (I/III)

Source: According to https://commons.wikimedia.org/wiki/File:Schema_Einsatz_von_Regelleistung.png. Accessed September 25, 2017. Own drawings.

 Frequency control ensured by conventional generators

 Rotating masses lead to instantaneous frequency support

 Primary control ensures new stable operating point due to 
increased power output

 Further control leads to constant frequency at nominal value

 RES decoupled from grid frequency due to inverter-based grid 
connection

 No direct coupling to frequency

 Only over-frequency support (reduction of power)

 Under-frequency support would mean active power reserves

 Investigations on frequency control and frequency supporting 
functionalities become more and more essential

 Examples

 Demonstration of control reserve with renewables: Project 
Combined Power Plants: http://www.kombikraftwerk.de

 Challenges in grid modeling (next slide)

 Frequency supporting functionalities (inertia & primary control) in 
wind turbines (2 slides ahead)
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Above

Middle - 12 „balancing“ models with tie lines and enhanced

Below - 12 „balancing“ models with tie lines and enhanced
modeling

- 10 % inertial generation

Frequency control in power systems with high penetration of renewables (II/III)

Pictures from: Schittek: Augmented block diagram model for investigating primary-control performance at low inertia, Master's thesis, Fraunhofer IWES, 2017. In Progress.

 Challenges in power system modeling

 Example

 Reduced inertia leads to increased requirements to power 
system models

 Balancing model vs. enhanced modelling of large power 
systems

 Reduced system inertia calls for enhanced models and new
modeling concepts

 Balancing model (one rotating mass, no tie lines)

 12 „balancing“ models with tie lines and enhanced
modeling (rotor angle, …)

 50 % inertial generation

 12 „balancing“ models with tie lines and enhanced
modeling (rotor angle, …)

 10 % inertial generation
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Frequency control in power systems with high penetration of renewables (III/III)

See also: Mende, Hennig, Akbulut, Becker, Hofmann: Dynamic Frequency Support with DFIG Wind Turbines – A System Study‘, IEEE EPEC, Ottawa, 2016. DOI: 10.1109/EPEC.2016.7771694.

 Frequency supporting functionalities of RES

 Modelling of wind turbines with frequency supporting functionalities (FSF)

 Study cases in power system models

 Example: IEEE 39 bus system, Generator outage, RES w/o FSF (StatGen, DFIGres)
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Optimized grid operation in power systems with high penetration of renewables (I/III)

 New challenges in grid operation due to increased flexibility of
generation and demand

 Volatile RES generation profiles

 Changing power flow patterns

 Increased ramping requirements (e.g. as known in the US as
„Duck curve“)

 Increased demands on coordination between TSO & DSO due to
changed generation location

 wind on HV-level

 solar pv on MV- and especially LV-level

 Optimization approaches allow facing different challenges

 Example:
Implementation of optimization algorithms in flexible modules to with
possibility of result validation

 Network modeling (PowerFactory)

 Scenario / Sensitivity generator (MatLab / Matpower)

 Optimization environment (GAMS)

enhanced
Matpower /

MPC-
format

IWES.WCMS /

IWES.Redispatch

(GAMS)

IWES.GridMod

(PowerFactory)

IWES.Scenario /

IWES.Sens

(MatLab)

Network Modeling
• Modeling of network
• Power flow calculation & 

further analysis methods
• Visualization

Topology data

Scenario  & sensitivity
generator

• Feed-in and load situation
• Neigbouring grid parameter
• Power flow sensitivities
• Optimization goals

Optimizationdata

Optimization
• Solving of the optimization

problem
• Reactive power control., 

voltage profile, losses, …
• Active power distribution

Validation
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Optimized grid operation in power systems with high penetration of renewables (II/III)

Pictures from: Sala: Optimal Reactive Power Management of Wind Farms for Coordinated TSO-DSO Voltage Control, Master’s thesis, Fraunhofer IWES, 2017. In Progress.

 Example:
Increased demands on optimization and coordination 
between TSO & DSO due to changed generation location

 Implementation of optimization tool to coordinate and
enhance TSO-DSO-interface

 Optimization on DSO-level to provide flexibility potential 
at interface to TSO

 Optimization on TSO-level using own and TSO-flexibilities
and giving setpoints to DSO

 DSO uses RES flexibilities to provide setpoints and new
flexibility potentials

 Study case

 Larger DSO area in northern Germany with high share of
RES

 (Part of) Northern Germany Transmission Grid

 Reactive power provision in given limits using different 
approaches
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 Conventional

 Incl. assumed
wind generators

 Comparison

Optimized grid operation in power systems with high penetration of renewables (III/III)

See also: Akbulut, Mende: Congestion Management Strategy in Combined Future AC/DC System, Fraunhofer IWES, 2017. In: IRP-Wind: Deliverable 81.5 – Congestion Management in combined future AC/DC System.

 European liberalized energy market

 Energy trading doesn‘t take grid restrictions into account
 „Trading on a copper plate“

 Possibility of large power transmission needs

 RES often far away from load centers

 RES installation in rural areas with low load

 Example: Offshore wind energy

 Modular optimization tool to find optimal solution for „re-
dispatching“ power plants

 Optimization of costs, powers or multiobbjective goals
including several optimization criteria

 Possibility to freely include flexibilities of generation and
load units

 Example:

 Redispatch according to overloading of lines

 Scenario w/o incorporating wind power plants

 Redispatched powers (tech), costs (eco) and combined
optimization using normalization approach (norm)
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Restoration in power systems with high penetration of renewables

See also: https://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/laufende/Netzkraft.html. Accessed on September 25, 2017.

 Integration of renewable generators in system restoration concepts: 
Project Netz:Kraft

 Classical restoration

 Opening and enhancing grid island

 Start of large conventional power plants

 Provision of loads

 RES not considered in restoration concepts or are strictly
limited/shut down

 Enhanced concepts including RES

 Integration of renewable generators in system restoration
concepts

 Improved planning using forecasts (renewables and load)

 Increased flexibility and possibilities through frequency
supporting functionalities and reactive power capabilities of
modern renewable generators

 Increasing of robustness of restoration paths

Concepts for system restoration

 (conventional) black start
units

 Large (conventional
thermal) blocks

 Loads

Concepts for system restoration with RES

 (conventional) black start
units

 Large (conventional
thermal) blocks

 Loads

 Renewable
generators
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 Test- and simulation-environment for grid control and aggregation strategies

 Applications ranging from developing prototype controllers to testing operative 
control software in the smart grid domain

 Features

 APIs to connect various simulation tools such as Opal-RT, pandapower, 
PYPOWER, MATPOWER or custom scripts in Matlab, Java and Python.

 Standard interfaces: VHPready, CIM and IEC 61850.

 Scalable environment - runs on desktop PCs and clusters.

 Interfaces for hardware-in-the-loop (HIL) tests.

 Example

 Implementation
of DSO / TSO
operation center

 Further Information

 www.OpSim.net

Demonstration of solutions - OpSim

See also: www.OpSim.net
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 Integration of renewable generators in system restoration concepts

 Increasing of flexibility and robustness of restoration paths

 Using frequency supporting functionalities and reactive power capabilities of RES

Summary

 Transition in electrical energy systems lead to various challenges

 Sharp increase in installations as well as in power provision

 Varying penetration of renewables & conventional generation

 Renewables need to participate in system services such as

 frequency control  voltage control

 system operation  system restoration

 Frequency control as challenge due to reduced rotating masses

 Challenges for modelling

 Frequency supporting functionalities and power reserves by RES

 Optimization and coordination at the interface of DSO / TSO 

 Flexible optimization implementations and algorithms

 Improved solutions in grid operation and congestion management

 Demonstration of system operation strategies and optimization
algorithms

 OpSim environment
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Agenda

I What is Fraunhofer-Gesellschaft and Fraunhofer IWES?

II Developing Long-Term Scenarios with High Levels of Decarbonisation

III Current Challenges of the Integration of Large Amounts of Wind and Solar Power

IV Technical Challenges and Prospects in Power Systems with High Penetration of Renewable Energies

V Training and Knowledge Transfer at Fraunhofer IWES
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Training and Knowledge Transfer at Fraunhofer IWES (I/II)

 We offer our "know-how pool" in different 
arrangements.

 Our target groups include decision-makers, specialists 
and executives from business and administration as well 
as students.

 With our IWES experts and with our broad network of 
experts from industry, consulting and universities, we 
provide basic and detailed knowledge on the use of 
renewable energies.

Characteristics
 National as well as international trainings / workshops

 Day or week seminars regarding various aspects of renewable energy sources

 Online master program and certificate programs Wind Energy Systems

 Customer-oriented specific trainings on demand
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Training and Knowledge Transfer at Fraunhofer IWES (II/II)

Example: Online-training for engineers of TSOs
 Wind and Solar Energy Sources Integration in Power Systems

 6 Modules

 50 lessons

Introduction: Basic 
Concepts of Wind and 

Solar PV Energy 

Wind and 
Solar PV Forecasting 

Planning considering 
Wind and Solar PV
Power Integration 

Long-Term 
Planning

Market Models and 
System Balancing 

Operational Analysis

4 lessons 6 lessons 12 lessons 10 lessons

10 lessons 8 lessons

Homework

Certificate

Exam
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Thank you very much for your attention!

I What is Fraunhofer-Gesellschaft and Fraunhofer IWES?

II Developing Long-Term Scenarios with High Levels of Decarbonisation (Philipp Härtel)

III Current Challenges of the Integration of Large Amounts of Wind and Solar Power (Dr. Malte Siefert)

IV Technical Challenges and Prospects in Power Systems with High Penetration of Renewable Energies (Denis Mende)

V Training and Knowledge Transfer at Fraunhofer IWES
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Thank you very much for your attention!

M.Sc. Philipp Härtel
Energy Economy and Grid Operation
Fraunhofer Institute for Wind Energy and Energy
System Technology IWES

Königstor 59 | 34119 Kassel
Phone +49 561 7294-471 | Fax +49 561 7294-260
philipp.haertel@iwes.fraunhofer.de

Dr. Malte Siefert
Energy Economy and Grid Operation
Fraunhofer Institute for Wind Energy and Energy
System Technology IWES

Königstor 59 | 34119 Kassel
Telefon +49 561 7294-457 | Fax +49 561 7294-260
malte.siefert@iwes.fraunhofer.de

Dipl.-Ing. Denis Mende
Energy Economy and Grid Operation
Fraunhofer Institute for Wind Energy and Energy
System Technology IWES

Königstor 59 | 34119 Kassel
Telefon +49 561 7294-425 | Fax +49 561 7294-260
denis.mende@iwes.fraunhofer.de


