
TALBOT The Art of Water ∇

GREEN HYDROGEN WATER NEXUS STUDY Embassy of the Kingdom of the Netherlands

26 June 2025

1. The South African Context

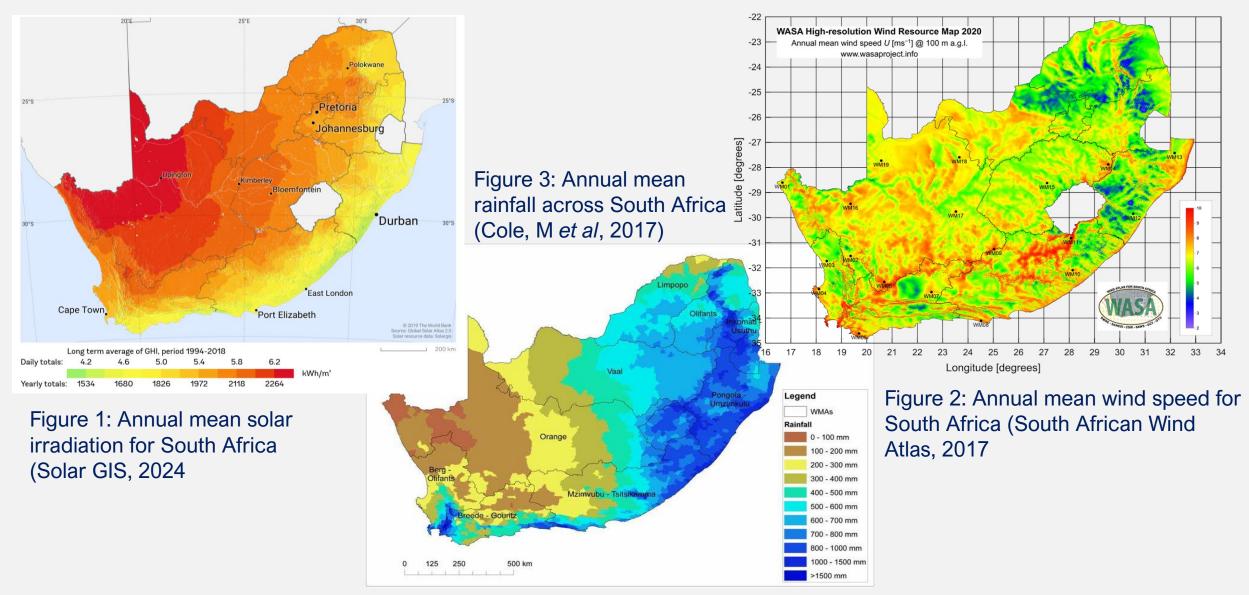
- A market Overview
- The GH2 Water Nexus
- Sustainable Water Supply
- 2. Opportunities
 - Opportunity 1 Pan Africa Resources (Mine Fissure Water)
 - Opportunity 2 Sibanye Stillwater (Acid Mine Drainage)
 - Opportunity 3 Phelan Green Hydrogen Project (Desalination)
 - Opportunity 4 Boegoebaai Desalination Plant and Port Development
 - Opportunity 5 Rand Water Effluent Reclamation Plant (Effluent)
- 3. Conclusions
- 4. Questions

The South African Context

........

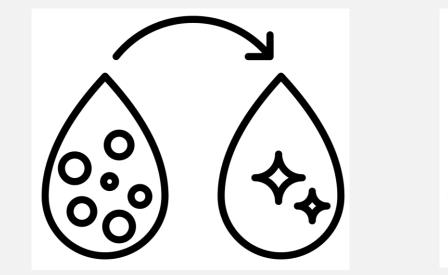
TALBOT

THE SOUTH AFRICAN CONTEXT

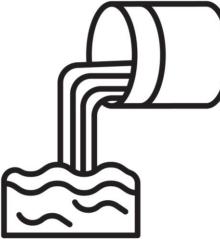

A market overview

- 1. Well placed to utilize vast renewable energy potential
- 2. Water scarce country existing pressures on limited surface water from domestic, industrial, agricultural and environmental sectors
- Department of Science and Innovation (DSI) developed The Hydrogen Society Roadmap (2021) Just Energy Transition: Reducing carbon emissions by 2050
- 4. DSI and private businesses (Anglo, Sasol and Engie) promote GH2 Valley production for integrated circular systems within the industrial and mining sectors (GDP contribution of USD 3.9-8billion)
- 5. Export of GH2 to European and Asian Markets via proposed deep port in Boegoebaai
- 6. GH2 to be used as alternate energy source (fuel cells) in transport sector and replace use of hydrogen.

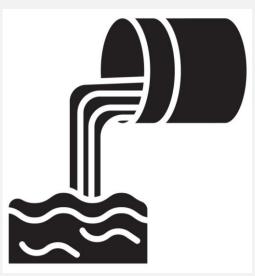
THE SOUTH AFRICAN CONTEXT


The GH2 Water Nexus

THE SOUTH AFRICAN CONTEXT



Sustainable Water Supply


Desalination

- Seawater
- Brine waste

Wastewater

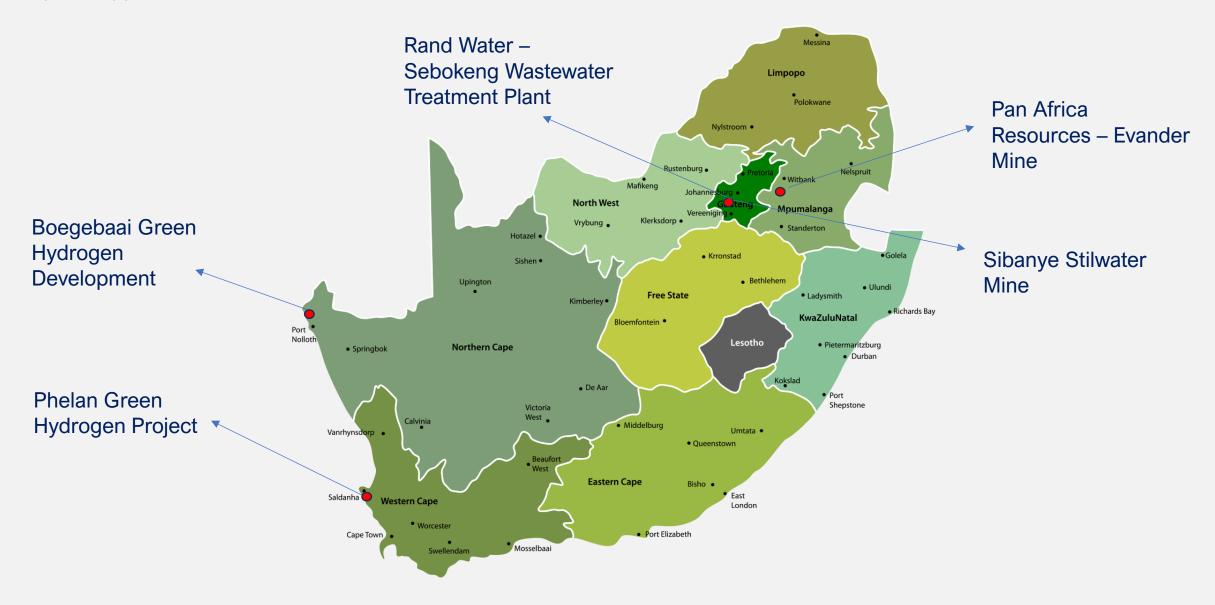
- Municipal
- Industrial

Mine Wastewater

- AMD
- Fissure water

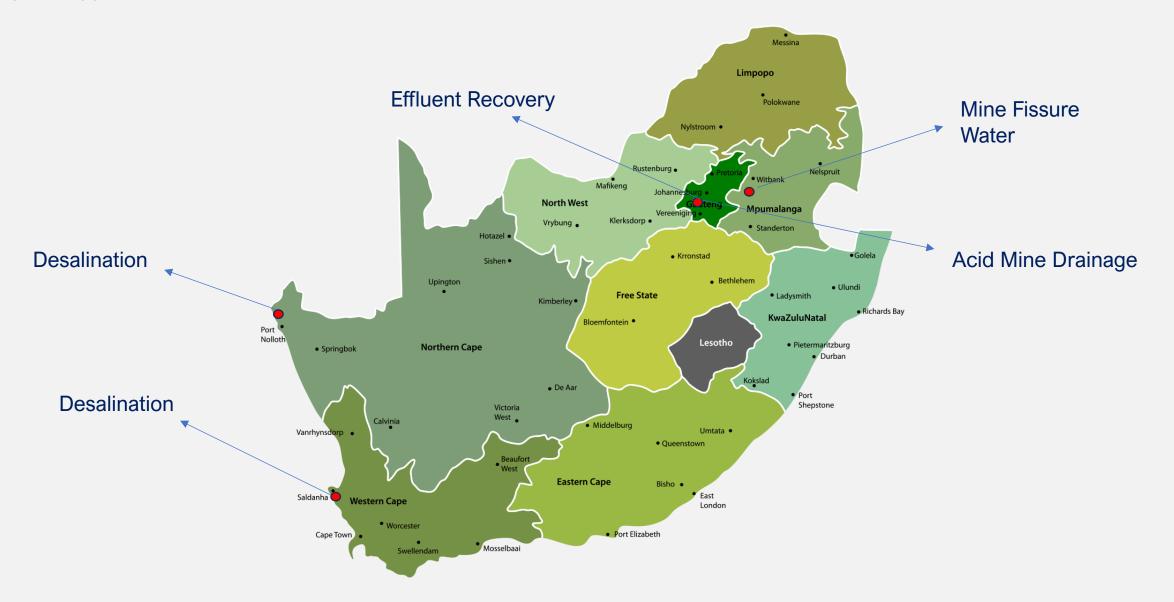
Opportunities

and the state of the state of the state of the state


...........

TALBOT

OVERALL OPPORTUNITIES


Top five opportunities identified in South Africa

OVERALL OPPORTUNITIES

Top five opportunities identified in South Africa

Opportunity 1

...........

OPPORTUNITY 1 – PAN AFRICAN RESOURCES

Mine Fissure Water

Process Water Dam

Water Supply ~25 years, area: 5.2 Km²

Existing pipelines,

Infrastructure

transmission lines, rail and road infrastructure

Benefit

Excess treated water and GH2 produced can contribute to the surrounding area

Vaal Hub

Located in

LB

The Art of Water

Solar Plant

Jonhannesburg

Existing solar plant with plans for increasing capacity

Collaboration

Opportunity for financial investment and technology collaboration

COST BREAKDOWN

Green Hydrogen Production Process	CAPEX Cost (R)	OPEX Cost (R/Year)
Water Treatment	19 075 338.75	763 013.55
Renewable Energy (Solar and Wind)	R0.90	0/kWh
Electrolysers	109 197 360.00	4 367 894.40
Conversion of Green Hydrogen to Ammonia	76 998 665.75	5 133 244.38
Conversion of Green Hydrogen to Liquified Hydrogen	473 200 000.00	18 928 000.00
Export of Green Hydrogen (Ammonia)	76 998 665.75	5 133 244.38
	Rever	nue (R)
Ammonia	35 932 710.68	
Liquified Hydrogen	90 586 363.64	
Export	54 351 818.18	

COST ANALYSIS

The following options were considered and a cost analysis conducted

	Option 1	Option 2	Option 3
Offtake	GH2 to ammonia	Liquified/compressed GH2	Exported GH2
Primary inputs			
Total Capex	205 271 365	601 472 699	205 271 365
Annual Operational Costs	37 141 425	50 936 181	37 141 425
Opex escalation	6.00%	6.00%	6.00%
Annual Revenue	35 932 711	90 586 364	54 351 818
Revenue escalation	6.00%	6.00%	6.00%
Returns (15-year)			
Discount rate	12.00%	12.00%	12.00%
NPV	(1 491 056 909)	(2 242 938 087)	(584 402 390)
IRR	-	(12.65%)	(3.53%)
Payback (years)	None	11	9

Opportunity 2

.........

OPPORTUNITY 2 – SIBANYE STILLWATER

Acid Mine Drainage

1

Treated Acid Mine Drainage

30 – 40 ML per day available

2

Infrastructure

Existing pipelines, transmission lines, rail and road infrastructure

Benefit

Direct platinum supply for electrolyser production/collaborati on

Vaal Hub Located in Jonhannesburg

Solar Plant

Planning to include solar plant within their mines 5

Offtake

Domestic industrial mine use for mobility of trucks. Potential for export via SA ports

COST BREAKDOWN

Green Hydrogen Production Process	CAPEX Cost (R)	OPEX Cost (R/Year)
Water Treatment	19 075 338.75	763 013.55
Renewable Energy (Solar and Wind)	R0.90	0/kWh
Electrolysers	109 197 360.00	4 367 894.40
Conversion of Green Hydrogen to Ammonia	76 998 665.75	5 133 244.38
Conversion of Green Hydrogen to Liquified Hydrogen	473 200 000.00	18 928 000.00
Export of Green Hydrogen (Ammonia)	76 998 665.75	5 133 244.38
	Rever	nue (R)
Ammonia	35 932 710.68	
Liquified Hydrogen	90 586 363.64	
Export	54 351 818.18	

COST ANALYSIS

The following options were considered and a cost analysis conducted

	Option 1	Option 2	Option 3
Offtake	GH2 to ammonia	Liquified/compressed GH2	Exported GH2
Primary inputs			
Total Capex	205 271 365	601 472 699	205 271 365
Annual Operational Costs	37 141 425	50 936 181	37 141 425
Opex escalation	6.00%	6.00%	6.00%
Annual Revenue	35 932 711	90 586 364	54 351 818
Revenue escalation	6.00%	6.00%	6.00%
Returns (15-year)			
Discount rate	12.00%	12.00%	12.00%
NPV	(1 491 056 909)	(2 242 938 087)	(584 402 390)
IRR	-	(12.65%)	(3.53%)
Payback (years)	None	11	9

Opportunity 3

.........

OPPORTUNITY 3 – PHELAN GREEN HYDROGEN PROJECT

Desalination

Desalination

~3.3 ML/d water supply required for electrolysis and 5-10 ML/day for cooling

Infrastructure

Existing pipelines, transmission lines, rail and road infrastructure and desalination plants

Benefit

Excess treated water and GH2 produced can contribute to the surrounding area

Western Cape

LB

The Art of Water

Located in Freeport Saldanha Industrial Development Zone

Solar Energy

Secured 6000ha land and 11ha land by Western Cape Government

Collaboration

Currently in advanced planning phase with production and export in 2026

COST BREAKDOWN

Green Hydrogen Production Process	CAPEX Cost (R)	OPEX Cost (R/Year)
Water Treatment	60 693 498.75	6 993 173.55
Renewable Energy (Solar and Wind)	R0.9	0/kWh
Electrolysers	109 197 360.00	4 367 894.40
Conversion of Green Hydrogen to Ammonia	76 998 665.75	5 133 244.38
Conversion of Green Hydrogen to Liquified Hydrogen	473 200 000.00	18 928 000.00
Export of Green Hydrogen	76 998 665.75	5 133 244.38
	Rever	nue (R)
Ammonia	35 932 710.68	
Liquified Hydrogen	90 586 363.64	
Export	54 351 818.18	

COST ANALYSIS

The following options were considered and a cost analysis conducted

	Option 1	Option 2	Option 3
Offtake	GH2 to ammonia	Liquified/compressed GH2	Exported GH2
Primary inputs			
Total Capex	246 889 525	643 090 859	246 889 525
Annual Operational Costs	43 371 585	57 166 341	43 371 585
Opex escalation	6.00%	6.00%	6.00%
Annual Revenue	35 932 711	90 586 364	54 351 818
Revenue escalation	6.00%	6.00%	6.00%
Returns (15-year)			
Payback (years)	None	13	15

Opportunity 4

.........

TALBOT

OPPORTUNITY 4 – BOEGOEBAAI DESALINATION PLANT AND PORT DEVELOPMENT

Desalination

Desalination

16 ML/d water supply required for electrolysers and 20-40 ML/d cooling water

Infrastructure

The deep-water port has not been built yet, however, has the potential for export

Benefit

Excess treated water and GH2 produced can contribute to the surrounding area

Northwest Cost Located in Northern Cape in SA LB

The Art of Water

Partnerships

Led by Sasol, with the Northern Economic Development Agency

Feasibility

Currently in feasibility stage for a 40GW plant to produce 40 000t/year GH2

COST BREAKDOWN

Green Hydrogen Production Process	CAPEX Cost (R)	OPEX Cost (R/Year)
Water Treatment	60 693 498.75	6 993 173.55
Renewable Energy (Solar and Wind)	R0.9	0/kWh
Electrolysers	109 197 360.00	4 367 894.40
Conversion of Green Hydrogen to Ammonia	76 998 665.75	5 133 244.38
Conversion of Green Hydrogen to Liquified Hydrogen	473 200 000.00	18 928 000.00
Export of Green Hydrogen	76 998 665.75	5 133 244.38
	Reve	nue (R)
Ammonia	35 932 710.68	
Liquified Hydrogen	90 586 363.64	
Export	54 351 818.18	

COST ANALYSIS

The following options were considered and a cost analysis conducted

	Option 1	Option 2	Option 3
Offtake	GH2 to ammonia	Liquified/compressed GH2	Exported GH2
Primary inputs			
Total Capex	246 889 525	643 090 859	246 889 525
Annual Operational Costs	43 371 585	57 166 341	43 371 585
Opex escalation	6.00%	6.00%	6.00%
Annual Revenue	35 932 711	90 586 364	54 351 818
Revenue escalation	6.00%	6.00%	6.00%
Returns (15-year)			
Payback (years)	None	13	15

Opportunity 5

.........

TALBOT

OPPORTUNITY 5 – RAND WATER

Effluent Reclamation Plant

Effluent reclamation plant

Water Supply ~300MI per day

Infrastructure Reclamation plant still to be built

Benefit

Excess treated water and GH2 produced can contribute to the surrounding area

Vaal Hub Located in Jonhannesburg

TALB

The Art of Water

Green Energy

Land available for wind and solar production

Collaboration

Opportunity for financial investment and technology collaboration

COST BREAKDOWN

Green Hydrogen Production Process	CAPEX Cost (R)	OPEX Cost (R/Year)
Water Treatment	17 875 338.75	715 013.55
Renewable Energy (Solar and Wind)	R0.9	0/kWh
Electrolysers	109 197 360.00	4 367 894.40
Conversion of Green Hydrogen to Ammonia	76 998 665.75	5 133 244.38
Conversion of Green Hydrogen to Liquified Hydrogen	473 200 000.00	18 928 000.00
Export of Green Hydrogen	76 998 665.75	5 133 244.38
	Rever	nue (R)
Ammonia	35 932 710.68	
Liquified Hydrogen	90 586 363.64	
Export	54 351 818.18	

COST ANALYSIS

The following options were considered and a cost analysis conducted

	Option 1	Option 2	Option 3
Offtake	GH2 to ammonia	Liquified/compressed GH2	Exported GH2
Primary inputs			
Total Capex	204 071 365	600 272 699	204 071 365
Annual Operational Costs	37 093 425	50 888 181	37 093 425
Opex escalation	6.00%	6.00%	6.00%
Annual Revenue	35 932 711	90 586 364	54 351 818
Revenue escalation	6.00%	6.00%	6.00%
Returns (15-year)			
Discount rate	12.00%	12.00%	12.00%
NPV	(1 480 325 394)	(2 232 206 572)	(573 670 875)
IRR	-	(12.51%)	(3.24%)
Payback (years)	None	11	9

Conclusions

and the state of the state of the state of the state

...........

TALBOT

CONCLUSIONS

Talbot conclude the following from the study

1	High-Level Cost Analysis	 Export of GH2 in the form of ammonia is most feasible. Ultrapure water treatment cost is 3-4% of overall cost.
2	Safety Considerations	 Stringent safety requirements are required during storage and conversion of GH2 to ammonia.
3	CAPEX and OPEX	 The CAPEX and OPEX requirements must be addressed through partnerships between governmental bodies, private entities and international funding sources.
4	Regulations	 A supportive regulatory framework is urgently needed. Collaborations with GIZ, who have extensive investment and research experience are recommended.
5	Environmental Impacts	 Production sites require large land area and are located in high biodiversity, brine disposal adds complexity. Environmental practitioners to be involved in design phase.

Questions

statements and a statement of the statement of the state

............

TALBOT