A BRIEF HISTORY OF MITOCHONDRIA 2007: Mashudu Ramano decides to participate in the Hydrogen and Fuel Cell Sector 2008 -2010: Mashudu embarks on an extensive study of energy transitions of the last 200 years. The name Mitochondria is chosen represents decentralized & distributed energy solution in nature. Mitochondria, AVL & Ceres Power Conducts tests on Project Phoenix, Gauteng & Emfuleni allocates 700 hectares Engages Architects and consultants Mitochondria Team conducts a study & recommends that we create our own Fuel Cell IP. IDC 05 **04** 03 02 06 **07** Mitochondria Systems Founded, Pre-feasibility Fuel Cell Factory opened in the DBSA comes on board followed by DTIC. AVL appointed to do & Bankable Feasibility Studies on Project Phoenix. Mitochondria installs Africa's first 100kW fuel cell system to provide energy to the Chamber of Mines building in Johannesburg becomes a shareholder. #### **ENERGY AS A SERVICE (EAAS)** Mitochondria Energy Company offer Energy as a Service and Hydrogen as a Service to the market #### **ELECTROLYSER** Local production of Electrolyser systems. Mitochondria is developing balance of plant and has partnered with global leading stack manufacturer #### STATIONARY FUEL CELLS Mitochondria is developing their own fuel cell system for multi fuel and highly efficient production of power and heat. Designed according to international standards for global deployment #### **MANUFACTURING** Mitochondria is establishing local production capabilities to assemble and manufacture electrolysers, fuel cells, micro hydro, batteries and power electronics # TECHNOLOGY PORTFOLIO # POWER ELECTRONICS Mitochondria is developing its own Power Electronics for Fuel Cells, Electrolysers and Batteries #### **BATTERIES** Mitochondria is utilizing different battery technologies together with their fuel cell system to offer complete off-grid solutions #### **OPERATION & MAINTENANCE** Mitochondria offer operation and maintenance services for fuel cells, electrolysers and other technologies #### **HYDRO POWERPODS** Mitochondria has partnered with unique low head micro hydro power developer to locally manufacture and distribute hydro power # **Project Phoenix** # Video: https://www.youtube.com/watc h?v=MbbhB9maGqA&t=92s # **ELECTROLYSER** # Soon to be Announced! | Electrolyser System | | |---------------------|----------------------------| | System Size | 1.25 MW | | Performance | ~ 50 kWh/kg H ₂ | | Hydrogen Output | 23 kg/h | #### **KEY ATTRIBUTES** - Strong Partnership - Local System Production - Multi Megawatt Size - First local unit 2025 ## MITOCHONDRIA MANUFACTURING ELECTROLYSER AND FUEL CELL TRENDS IN SOUTH AFRICA ## COMPARISON OF FUEL CELL TECHNOLOGIES | Fuel Cell
Type | Common
Electrolyte | Operating
Temperature | Typical Stack
Size | Electrical
Efficiency
(LHV) | Applications | Advantages | Challenges | |---|---|--------------------------|--|--|--|---|---| | Polymer
Electrolyte
Membrane
(PEM) | Perfluorosulfonic acid | <120°C | <1 kW - 100 kW | 60% direct H ₂ ; ⁱ
40%
reformed fuel ⁱⁱ | Backup powerPortable powerDistributed generationTransportationSpecialty vehicles | Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up and load following | Expensive catalystsSensitive to fuel impurities | | Alkaline
(AFC) | Aqueous potassium hydroxide soaked in a porous matrix, or alkaline polymer membrane | <100°C | 1 - 100 kW | 60% ⁱⁱⁱ | MilitarySpaceBackup powerTransportation | Wider range of stable materials
allows lower cost components Low temperature Quick start-up | Sensitive to CO₂ in fuel and air Electrolyte management (aqueous) Electrolyte conductivity (polymer) | | Phosphoric
Acid
(PAFC) | Phosphoric acid
soaked in a porous
matrix or imbibed in a
polymer membrane | 150 - 200°C | 5 - 400 kW,
100 kW module
(liquid PAFC);
<10 kW (polymer
membrane) | 40% ^{iv} | Distributed generation | Suitable for CHP Increased tolerance to fuel impurities | Expensive catalystsLong start-up timeSulfur sensitivity | | Molten
Carbonate
(MCFC) | Molten lithium, sodium,
and/or potassium
carbonates, soaked in a
porous matrix | 600 - 700°C | 300 kW - 3 MW,
300 kW module | 50% ^v | Electric utility Distributed generation | High efficiencyFuel flexibilitySuitable for CHPHybrid/gas turbine cycle | High temperature corrosion and breakdown of cell components Long start-up time Low power density | | Solid
Oxide
(SOFC) | Yttria stabilized
zirconia | 500 - 1000°C | 1 kW - 2 MW | 60% ^{vi} | Auxiliary powerElectric utilityDistributed generation | High efficiency Fuel flexibility Solid electrolyte Suitable for CHP Hybrid/gas turbine cycle | High temperature corrosion and
breakdown of cell components Long start-up time Limited number of shutdowns | ## OVERVIEW OF FUEL CELLS IN SOUTH AFRICA 9/18/2024 ## OVERVIEW OF FUEL CELLS IN SOUTH AFRICA - Anglo America Fuel Cell Mining Truck - 500t truck (300t load) - 2MW peak power (Fuel Cell + Battery) - "Performance parity with diesel trucks" - Anglo Invested - First Model: "order of US\$1.5 billion and includes a \$200 million equity injection from Anglo American" — - ± 400MW of fuel cells order Source: https://firstmode.com/updates/first-mode-secures-200-million-in-funding-from-anglo-american-and-combines-with-nugen-team/ ## COMPARISON OF ELECTROLYSER TECHNOLOGIES | | Alkaline | PEM | SOE | AEM | | |----------------------------------|---|--|-------------------------------------|-----------------------------------|--| | Electrolyte | Aqueous potassium hydroxide | PFSA membranes
(e.g., Nafion) | Yttria Stabilises
Zirconia (YSZ) | Anion exchange ionomer | | | Cathode | Nickel,
Nickel - Molybdenum
alloy | Platinum,
Platinum - Palladium
alloy | Nickel/YSZ | Nickel and Nickel
alloys | | | Anode | Nickel,
Nickel - Cobalt alloys | Ruthenium oxide,
Iridium oxide | YSZ | Nickel, Ferrous,
Cobalt oxides | | | Operating
Temperature
(°C) | 60-80 | 50-80 | 500-850 | 50-60 | | | Operating Pressure (Bar) | 30 | 70 | 1-25 | 1-30 | | | Stack Lifetime
(h) | 60-100k | 20-60k | <10k | - | | | Technology
Readiness | Matured | Commercialised | Demonstration | Large prototype | | | Cost | USD 500-1400/kW USD 1100-1800/kW USD 2800-5600/kW | | | | | ## OVERVIEW OF ELECTROLYSERS IN SOUTH AFRICA ## FUEL SOURCE COMPARISON #### Risk Adversities - Foreign currency denominated fuel costs (\$/barrel) - Volatility in local fuel supply - Majority of fuel supply is based on fossil fuels high emissions ## OVERVIEW OF ELECTROLYSERS IN SOUTH AFRICA | No. | Project | Status | | | |-----|--|---|--|--| | 1 | HySHiFT, sustainable aviation fuel production in Secunda | Successfully progressed to next phase of the H2 Global bidding process | | | | 2 | Prieska Energy Cluster green ammonia production in the Northern Cape | Feasibility study in progress (2025 commission date) | | | | 3 | Boegoebaai GH ₂ Port in the Northern Cape | Master planning completed and 3 potential port developers announced | | | | 4 | Ubuntu GH ₂ Project in the Northern Cape | Pre-feasibility study completed | | | | 5 | Atlanthia Green Hydrogen production at Saldhana Bay | Pre-feasibility conducted | | | | 6 | Upilanga Solar and Green Hydrogen Park in Northern Cape | Bankable Feasibility Study in progress | | | | 7 | Sasolburg Green Hydrogen Programme in the Free State | Successful production of green hydrogen | | | | 8 | Hive energy Green Ammonia in Eastern Cape | Pre-feasibility study completed | | | | 9 | Hydrogen Valley Programme - Limpopo, KZN and Gauteng corridors | Various stages of feasibility, Rhynbow project completed pre
feasibility study | | | #### EXAMPLE OF ELECTROLYSERS IN SOUTHERN AFRICA # Sable Chemicals @ A Glance - Sole Ammonium Nitrate (AN) manufacturer in Zimbabwe - Started operations in 1969 based on 100% imported ammonia - Added Ammonia making section in 1972, including Electrolysis - Required 115 MW of power at full capacity - Based on hydro power from Kariba "Green" ammonia till 2015 - Sable plant was the largest of 10 in the world = (70% of NH₃ requirements) - Full capacity 240 000 tonnes of Ammonium Nitrate (AN) annually. - Employed 480 people - Electrical Grid Constrains & Infrastructure - R390b for Transmission Infrastructure - Intermittency of solar PV and wind - Hydrogen pipeline costs up to <u>four times less</u> than via powerlines (when comparing like for like distance and capacity scenarios*) - South Africa's reliance imported Oil & Gas (foreign currency denominated) - Hydrogen to replace imported oil - Local produced hydrogen instead of imported LNG - Theoretical Example 1: Municipality - Invest in RE - ENCOURAGE/COMPENSATE THEIR CUSTOMERS TOWARDS RE - Access RE transformed to H2 - H2 is used for: - Electricity generation (peak and long term (seasonal) storage) - Displace electrical infrastructure constrain/upgrade - Heat (LPG replacement) - Public transport (hydrogen buses / taxis) - Heavy duty transport - Adjacent Industries (paper/cement/steel/ammonia etc.) 9/18/2024 - Theoretical Example 2: Mining House - Invest in large RE (over design) - Access RE transformed to H2 - GREEN H2 is used for: - CLEAN SUSTAINABLE MINING - Electricity generation (peak and long term (seasonal) storage) - Diesel replacement - Transport (mining vehicles, others) - Back-up generation - Refining / Industrial Processes - Reduce CO2 footprint - Upcycle CO2 emissions - Theoretical Example 3: Agri Sector - Invest in RE - Access RE transformed to H2 - H2 is used for: - CLOSE CIRCLE ECONOMY - Electricity generation (peak and long term (seasonal) storage) - Diesel replacement - Transport (farming vehicles, others) - Back-up generation - Fertiliser production # Thank You Iridium-thrifting is a critical factor to avoid potential material bottlenecks during the hydrogen ramp-up and has a high impact on material costs. | Table 1: | : Projected market potential along the PtX value chain in South Africa | | | | | | | |----------|--|------|------|------|--|--|--| | NO | ITEM | 2030 | 2040 | 2050 | | | | | 1 | Total GH_2/PtX demand (million tonnes, $Mt\ H_2$ equivalent) | 1.2 | 1.8 | 2.9 | | | | | 2 | Electrolyser capacity requirements (GW) | 10.9 | 16.2 | 24.9 | | | | | 3 | RE capacity requirements (GW) | 21.8 | 32.5 | 48.9 | | | | | 4 | Iridium (tonnes) | 10.9 | 11.4 | 9.8 | | | | | 5 | Platinum (tonnes) | 4.0 | 3.8 | 2.4 | | | |